Roll No.

Total Pages : 03

BT-4/M-20 34107 ELECTRICAL MACHINES-II EE-208-N (Opt. II)

Time : Three Hours]

[Maximum Marks: 75

Note AttemptFive questions in all, selecting and east question from each Unit. All questions carry equal marks.

Unit I

- (a) Derive the expression of generated e.m.f. in three phase induction machine. Also explain the winding factor.
 - (b) The power input to the rotor of a 400 V, 50 Hz 10¹¹¹6 pole, 3-phase induction motor is 20 kW. The slip is 3%. Calculate : **8**
 - Frequency of the rotor current

1

- (ii) Rotor speed
 - (iii) Rotor copper loss
 - (iv) Rotor resistance per phase if rotor current is 60 A.

(2)L-34107

Download all NOTES and PAPERS at StudentSuvidha.com

- 2. (a) Explain the significance of running light and blocked rotor test of induction machines.7
 - (b) A 10 kW, 400 V, 4 pole delta-connected squirrel cage inductionmotor gave the following test results :
 Ro-load test : 400 V, 8 A, 250 Watts Blocked rotor test : 90 V, 35 A, 1350 Watts

The d.c. resistance of the stator winding per phase measured immediately after the blocked rotor test is 0.6 **a**. Calculate the rotational osses and the equivalent circuit parameters.

Unit I

3. (a) Draw the torque-slip haracteristios the three phase induction machine and explain the effect of change in rotor resistance.
7
(b) A 60 W, 400 V, 3 phase, 6 pole, 50 Hz wound rotor induction motor has a full load slip of 0.04 when operating at rated voltage and frequency with rotor windingshort circuited t slip rings. The slip at maximum torque is 0.2. Stator resistance and rotational losses are neglected. Determine the :

(i) maximum torque
(ii) full load rotor ohmic losses.

(2)L-34107

2

- 4. (a) Explain the double revolving field theory of single phase induction machine.7
 - (b) Draw the equivalent tircuit of the single phase induction machine. 8

Unit III

- (a) Draw the phasordiagramof the synchronous generator showing the effect of mmf and emf.
 - (b) Explain the armature reaction of synchronous generator. 8
- 6. (a) Derive an expression for the power developed in cylindrical rotor and salient-pole rotor synchronous generator.
 - (b) A 3-phase alternator has a direct axis synchronous reactance of 0.7 p.u. and a quadratureaxis synchronous reactance of 0.4 p.u. Draw the vector diagram for full load 0.8 power factor lagging and obtain there from (i) The load angle, (ii) No load per unit.

Unit IV

7. (a) Explain the starting methods of synchronous motor.7

(b) Explain V-curves in synchronous motor8

8. (a) Explain the principle of synchronous condensor.
 (b) Explain the functioning f high starting torque motors.
 8

(2)L-34107

3